organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(3-methoxy-6-methyl-2-pyridyl) ether

Yuan-Yuan Jiang,^a Hong-Hong Lan,^b Dong-Sheng Deng^c and Bao-Ming li^{c*}

^aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, ^bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China Correspondence e-mail: lyhxxjbm@126.com

Received 7 December 2007; accepted 19 December 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.048: wR factor = 0.147: data-to-parameter ratio = 14.0.

In the molecule of the title compound, C14H16N2O3, the dihedral angle between the pyridyl rings is 87.74 (3)°. In the crystal structure, intermolecular C-H···O hydrogen bonds link the molecules into infinite zigzag chains.

Related literature

For related literature, see: Jung et al. (1997); Dunne et al. (1995); Wang et al. (2001); Goulle et al. (1993); Gilat et al. (1995); Kawai et al. (1995); Gütlich et al. (1994). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data

C14H16N2O3 $M_{\rm r} = 260.29$ Monoclinic, $P2_1/c$ a = 12.146 (2) Å b = 7.5372 (15) Å c = 14.669 (3) Å $\beta = 94.577 (3)^{\circ}$

$V = 1338.6 (4) \text{ Å}^3$	
Z = 4	
Mo $K\alpha$ radiation	
$\mu = 0.09 \text{ mm}^{-1}$	
T = 294 (2) K	
$0.29 \times 0.21 \times 0.13$ mr	n

Data collection

Bruker SMART CCD area-detector	8226 measured reflections
diffractometer	2477 independent reflections
Absorption correction: multi-scan	1229 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.041$
$T_{\min} = 0.974, \ T_{\max} = 0.988$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	177 parameters
$wR(F^2) = 0.146$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
2477 reflections	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{C6-H6\cdots O3^{i}}$	0.93	2.52	3.358 (3)	150
Symmetry code: (i)	$-x + 2, v + \frac{1}{2}, -$	$-z + \frac{1}{2}$		

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

This work was supported by the Henan Innovation Project for University Prominent Research Talents (grant No. 2005 KYCX021) and the Natural Science Foundation of Henan Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2409).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2004). SHELXTL, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1995). Acta Cryst. C51. 1454-1457.

Gilat, S. L., Kawai, S. H. & Lehn, J.-M. (1995). Chem. Eur. J. 1, 275-284.

- Goulle, V., Harriman, A. & Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun. pp. 1034-1035.
- Gütlich, P., Hauser, A. & Spiering, H. (1994). Angew. Chem. Int. Ed. Engl. 33, 2024-2054.
- Jung, O.-S., Jo, D. H., Lee, Y.-A., Conklin, B. J. & Pierpont, C. G. (1997). Inorg. Chem. 36, 19-24.
- Kawai, S. H., Gilat, S. L., Ponsinet, R. & (1995). Chem. Eur. J. 1, 285-293.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wang, H. F., Tomizawa, H. & Miki, E. (2001). Inorg. Chim. Acta, 321, 215-220.

supplementary materials

Acta Cryst. (2008). E64, o369 [doi:10.1107/S160053680706775X]

Bis(3-methoxy-6-methyl-2-pyridyl) ether

Y.-Y. Jiang, H.-H. Lan, D.-S. Deng and B.-M. Ji

Comment

2,2'-Dipyridylether and its derivatives are a kind of extensively studied (Jung *et al.*, 1997; Dunne *et al.*, 1995; Wang *et al.*, 2001; Goulle *et al.*, 1993) multifuntional organic ligands. Most research in this area has focused on conjugated organic molecules undergoing frequency-sensitive reversible bond-forming reactions, for the design of inorganic or organometallic switches (Gilat *et al.*, 1995; Kawai *et al.*, 1995; Gütlich *et al.*, 1994). As part of our ongoing studies, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (N1/C1/C2/C4-C6) and B (N2/C9/C10/C12-C14) are, of course, planar and the dihedral angle between them is A/B = 87.74 (3)°.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into infinite zigzag chains (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 2-iodo-3-methoxy-6-methylpyridine (250 mg, 1 mmol) and active Cu powder (511 mg, 8 mmol) were added to a solution of DMF (10 ml). The resulting mixture was heated at 428 K for 24 h under nitrogen atmosphere. After the active Cu powder was filtered, the filtrate was washed with water (3×20 ml), and the aqueous layer was extracted by ethyl acetate (3×20 ml). The combined organic layer was dried over anhydrous MgSO₄, and the solvent was removed *in vacuo* to give the crude product. After purification by silica gel chromatography, a clear solution was set aside to crystallize.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H, and x = 1.2 for aromatic H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Bis(3-methoxy-6-methyl-2-pyridyl) ether

Crystal data	
$C_{14}H_{16}N_2O_3$	$F_{000} = 552$
$M_r = 260.29$	$D_{\rm x} = 1.292 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1190 reflections
a = 12.146 (2) Å	$\theta = 2.8 - 20.3^{\circ}$
<i>b</i> = 7.5372 (15) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 14.669 (3) Å	T = 294 (2) K
$\beta = 94.577 \ (3)^{\circ}$	Block, colorless
$V = 1338.6 (4) \text{ Å}^3$	$0.29 \times 0.21 \times 0.13 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	2477 independent reflections
Radiation source: fine-focus sealed tube	1229 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 294(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.974, T_{\max} = 0.988$	$k = -9 \rightarrow 8$
8226 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.0653P)^2 + 0.0571P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.147$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$

2477 reflections

177 parameters

 $\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 1997), Fc^{*}=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4}

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.77209 (13)	0.0344 (2)	0.12530 (11)	0.0774 (6)
O2	0.97934 (14)	0.1001 (2)	0.10596 (15)	0.0854 (6)
03	0.72046 (17)	-0.3036 (3)	0.15773 (14)	0.0996 (7)
N1	0.79139 (16)	0.0722 (3)	0.28290 (16)	0.0669 (6)
N2	0.59034 (19)	0.1178 (3)	0.11932 (13)	0.0747 (7)
C1	0.9468 (2)	0.1105 (3)	0.1925 (2)	0.0677 (7)
C2	0.8363 (2)	0.0727 (3)	0.2043 (2)	0.0630(7)
C4	0.8564 (2)	0.1129 (3)	0.3590 (2)	0.0736 (8)
C5	0.9660 (3)	0.1532 (4)	0.3532 (2)	0.0884 (9)
Н5	1.0099	0.1810	0.4061	0.106*
C6	1.0115 (2)	0.1529 (3)	0.2703 (2)	0.0837 (9)
Н6	1.0856	0.1813	0.2671	0.100*
C7	0.8040 (2)	0.1079 (4)	0.44789 (19)	0.0953 (9)
H7A	0.7319	0.1603	0.4401	0.143*
H7B	0.8489	0.1731	0.4932	0.143*
H7C	0.7978	-0.0130	0.4674	0.143*
C8	1.0953 (2)	0.1180 (4)	0.0964 (2)	0.0986 (10)
H8A	1.1190	0.2350	0.1148	0.148*
H8B	1.1096	0.0990	0.0337	0.148*
H8C	1.1352	0.0318	0.1343	0.148*
C9	0.6354 (2)	-0.1871 (4)	0.14619 (17)	0.0750 (8)
C10	0.6628 (2)	-0.0120 (4)	0.13349 (16)	0.0660 (7)
C12	0.4831 (2)	0.0807 (5)	0.11836 (18)	0.0813 (9)
C13	0.4500 (3)	-0.0916 (5)	0.1311 (2)	0.0928 (10)
H13	0.3749	-0.1166	0.1301	0.111*
C14	0.5245 (3)	-0.2276 (5)	0.14539 (19)	0.0889 (9)
H14	0.5010	-0.3433	0.1542	0.107*

supplementary materials

C15	0.4036 (2)	0.2307 (5)	0.1025 (2)	0.1091 (11)
H15A	0.3917	0.2861	0.1598	0.164*
H15B	0.3347	0.1862	0.0749	0.164*
H15C	0.4332	0.3160	0.0624	0.164*
C16	0.6933 (3)	-0.4891 (4)	0.1585 (2)	0.1124 (11)
H16A	0.6520	-0.5143	0.2100	0.169*
H16B	0.7601	-0.5579	0.1627	0.169*
H16C	0.6498	-0.5190	0.1031	0.169*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0539 (11)	0.1004 (15)	0.0774 (12)	-0.0163 (10)	0.0011 (9)	0.0035 (10)
O2	0.0556 (12)	0.0860 (14)	0.1149 (16)	-0.0083 (9)	0.0090 (10)	0.0070 (12)
O3	0.0906 (15)	0.0842 (15)	0.1229 (17)	0.0000 (12)	0.0017 (12)	0.0031 (12)
N1	0.0656 (14)	0.0569 (14)	0.0764 (15)	-0.0016 (10)	-0.0059 (12)	0.0004 (11)
N2	0.0645 (15)	0.0939 (18)	0.0648 (14)	-0.0066 (14)	0.0002 (11)	-0.0061 (12)
C1	0.0533 (16)	0.0486 (15)	0.100 (2)	-0.0005 (12)	0.0001 (16)	0.0009 (15)
C2	0.0559 (16)	0.0473 (15)	0.083 (2)	-0.0043 (12)	-0.0124 (15)	0.0040 (14)
C4	0.078 (2)	0.0514 (16)	0.088 (2)	0.0046 (14)	-0.0149 (17)	-0.0074 (14)
C5	0.082 (2)	0.068 (2)	0.108 (3)	-0.0014 (16)	-0.0298 (19)	-0.0185 (18)
C6	0.0581 (17)	0.0625 (19)	0.128 (3)	-0.0084 (14)	-0.0108 (19)	-0.0091 (18)
C7	0.111 (2)	0.087 (2)	0.086 (2)	0.0068 (18)	-0.0066 (18)	-0.0127 (17)
C8	0.0561 (18)	0.091 (2)	0.150 (3)	-0.0090 (16)	0.0203 (17)	0.006 (2)
C9	0.0730 (19)	0.077 (2)	0.0749 (19)	-0.0030 (17)	0.0040 (15)	-0.0077 (16)
C10	0.0541 (16)	0.080 (2)	0.0635 (17)	-0.0112 (15)	0.0030 (12)	-0.0036 (15)
C12	0.064 (2)	0.112 (3)	0.0676 (18)	-0.0007 (18)	0.0036 (14)	-0.0150 (17)
C13	0.0588 (18)	0.127 (3)	0.094 (2)	-0.019 (2)	0.0089 (16)	-0.032 (2)
C14	0.075 (2)	0.099 (2)	0.093 (2)	-0.0320 (19)	0.0139 (17)	-0.0205 (19)
C15	0.079 (2)	0.145 (3)	0.102 (2)	0.030 (2)	-0.0016 (17)	-0.009 (2)
C16	0.146 (3)	0.071 (2)	0.124 (3)	-0.006 (2)	0.037 (2)	0.000(2)

Geometric parameters (Å, °)

O1—C2	1.374 (3)	С7—Н7С	0.9600
O1—C10	1.388 (3)	C8—H8A	0.9600
O2—C1	1.361 (3)	C8—H8B	0.9600
O2—C8	1.433 (3)	С8—Н8С	0.9600
O3—C9	1.356 (3)	C9—C14	1.381 (4)
O3—C16	1.437 (3)	C10—N2	1.321 (3)
N1—C2	1.315 (3)	С10—С9	1.377 (4)
N1—C4	1.350 (3)	C12-C13	1.377 (4)
N2—C12	1.331 (3)	C12—C15	1.493 (4)
C1—C6	1.371 (4)	C13—C14	1.372 (4)
C2—C1	1.396 (3)	С13—Н13	0.9300
C4—C5	1.375 (4)	C14—H14	0.9300
C4—C7	1.496 (3)	C15—H15A	0.9600
С5—Н5	0.9300	C15—H15B	0.9600
C6—C5	1.376 (4)	C15—H15C	0.9600

С6—Н6	0.9300	C16—H16A	0.9600
С7—Н7А	0.9600	C16—H16B	0.9600
С7—Н7В	0.9600	C16—H16C	0.9600
C2—O1—C10	117.5 (2)	H8A—C8—H8C	109.5
C1—O2—C8	116.6 (2)	H8B—C8—H8C	109.5
C9—O3—C16	117.3 (2)	O3—C9—C10	116.6 (2)
C2—N1—C4	118.0 (2)	O3—C9—C14	126.2 (3)
C10—N2—C12	119.0 (3)	C10-C9-C14	117.1 (3)
O2—C1—C6	126.9 (3)	N2-C10-C9	124.5 (2)
O2—C1—C2	117.2 (2)	N2-C10-O1	115.4 (2)
C6—C1—C2	115.9 (3)	C9—C10—O1	119.7 (3)
N1—C2—O1	119.5 (2)	N2—C12—C13	119.6 (3)
N1—C2—C1	125.4 (3)	N2—C12—C15	117.6 (3)
01—C2—C1	115.1 (3)	C13—C12—C15	122.9 (3)
N1—C4—C5	120.3 (3)	C14—C13—C12	121.9 (3)
N1—C4—C7	117.0 (3)	С14—С13—Н13	119.0
C5—C4—C7	122.7 (3)	С12—С13—Н13	119.0
C4—C5—C6	120.9 (3)	C13—C14—C9	117.9 (3)
C4—C5—H5	119.5	C13—C14—H14	121.1
С6—С5—Н5	119.5	C9—C14—H14	121.1
C1—C6—C5	119.5 (3)	C12—C15—H15A	109.5
C1—C6—H6	120.3	C12—C15—H15B	109.5
C5—C6—H6	120.3	H15A—C15—H15B	109.5
C4—C7—H7A	109.5	C12—C15—H15C	109.5
C4—C7—H7B	109.5	H15A—C15—H15C	109.5
H7A—C7—H7B	109.5	H15B-C15-H15C	109.5
C4—C7—H7C	109.5	03—C16—H16A	109.5
H7A - C7 - H7C	109.5	O3—C16—H16B	109.5
H7B-C7-H7C	109.5	H16A—C16—H16B	109.5
Ω^2 —C8—H8A	109.5	O_3 — C_16 — H_16C	109.5
Ω^2 C_8 H_{8B}	109.5	H_{16A} $-C_{16}$ $-H_{16C}$	109.5
H8A—C8—H8B	109.5	H16B-C16-H16C	109.5
O2—C8—H8C	109.5		107.0
C10-01-C2-N1	-3.1(3)	01—C2—C1—O2	-2.0(3)
C10-01-C2-C1	177.2 (2)	N1—C2—C1—C6	-1.1 (4)
C2-O1-C10-N2	97.5 (3)	O1—C2—C1—C6	178.6 (2)
C2	-88.9 (3)	N1—C4—C5—C6	0.0 (4)
C8—O2—C1—C6	6.7 (4)	C7—C4—C5—C6	178.7 (3)
C8-02-C1-C2	-172.6(2)	C1—C6—C5—C4	-0.5(4)
C16—O3—C9—C10	-171.7(2)	O3—C9—C14—C13	-178.9(3)
C16—O3—C9—C14	7.9 (4)	C10-C9-C14-C13	0.7 (4)
C2—N1—C4—C5	0.0 (4)	C9—C10—N2—C12	1.1 (4)
C2_N1_C4_C7	-178.8(2)	01 - C10 - N2 - C12	174.4 (2)
C4—N1—C2—O1	-179.1 (2)	N2-C10-C9-O3	178.5 (2)
C4—N1—C2—C1	0.6 (4)	O1—C10—C9—O3	5.4 (4)
C10-N2-C12-C13	-0.7 (4)	N2-C10-C9-C14	-1.1 (4)
C10-N2-C12-C15	179.8 (2)	O1-C10-C9-C14	-174.2.(2)
O2-C1-C6-C5	-178.4 (2)	N2-C12-C13-C14	0.3 (4)

supplementary materials

C2—C1—C6—C5 N1—C2—C1—O2	1.0 (4) 178.3 (2)	C15—C12—C13—C14 C12—C13—C14—C9		179.8 (3) -0.3 (4)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
C6—H6···O3 ⁱ	0.93	2.52	3.358 (3)	150
Symmetry codes: (i) $-x+2$, $y+1/2$, $-z+1/2$	2.			

Fig. 2

